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Abstract A quantum description adapted to scrutinize chemical reaction mecha-
nisms obtains by implementing an electronuclear separation via quantum numbers
method; truly diabatic base states obtain that sustain quantum states expressed as lin-
ear superpositions. A proto-type bond breaking/formation case: H+

2 ⇔ H(1s)+ H+
test possibilities via mathematical modeling. Asymptotic states (|H〉 ⊗ |H+〉) and
(|H+〉 ⊗ |H〉) and basis states for quantized electromagnetic radiation complete the
model; Feshbach-resonance-like quantum states obtain that play pivotal roles gating
association/dissociation processes. A fixed grid of floating Gaussian orbitals permits
actual computations compatible with this method. The information therefrom gleaned
is used to construct model Hamiltonians easily adaptable to second quantization for-
malisms. Theoretical developments and non-routine computations results can directly
be related to experiment.
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1 Introduction

The development of diabatic schemes serving as a ground to formulate a quantum
theory of chemical reactions has been one of our continued focus of interest [1–9].
Besides, quantum technology at laboratory level is producing important progress [10–
17] and, as a result, the way we quantum chemists look at simple chemical systems
has begun to be turned upside down. Use of molecular states to encode quantum
information [10,11], as well as confining techniques (e.g., optical [12] or chip-based
micro-traps [13,14]) open possibilities for changing molecular responses (properties);
external electric and magnetic fields allow for modulation and manipulation of molec-
ular quantum states including the tuning of reaction mechanisms [15]. A by-product
of this would be the ability to overcome pathways via forbidden transitions [16],
thereby opening possibilities to find paths to new chemical species that otherwise
cannot be achieved by conventional thermal or photochemical means [17]. On the
theoretical side, mechanistic descriptions of poly-electronic system would most likely
require mixing of base states with different total angular momenta as discussed e.g. in
ref. [18] thereby overcoming some severe limitations in the present computing state
of affairs.

Thus, understanding the phenomena above requires a fair amount of quantum
mechanical concepts that are not available from standard computational-chemistry
technology based on Born-Oppenheimer (BO) adiabatic model. Such an approach
leads to classical potential energy surfaces (PES); in particular, implementations with
atomic (Gaussian) orbitals attached at nuclei may conceal hidden difficulties when
handling mechanistic studies of bond break/forming as shown by Crespo et al. [19];
see also references therein where detailed discussions can be found [19]. Now, even
in the simple H+H reaction, BO-PES generated with standard computational algo-
rithms do not produce a mechanism consistent with the experimental observations.
Thus, it is more and more apparent that proper quantum counterparts must somehow
replace inadequate classical mechanical models; see ref. [8] for comparisons. The
present paper, starting from diabatic perspectives, moves forward the mathematical
formalism and prepares it to explore electronuclear separability via a new perspective:
namely, quantum numbers [1,20,21]. The separability by quantum numbers provides,
in principle, a chemically flavored basis set as illustrated below. Furthermore, this
basis set concept prompts for extensions towards formalisms based on second quan-
tization schemes that can be adapted fairly easily thereby opening new applicability
domains.

The system H ·
2 � H(1s)+ H · stands out as a model prototype adaptable to studies

of generic chemical bond break/forming processes describable as bond altering ones;
from the physical point of view, it involves notions at a fundamental quantum physical
level including quantum entanglement. Here we extend and develop the quantum treat-
ment given in ref. [1] for isomerization processes along two directions: (1) inclusion of
asymptotic states needed to model a bimolecular and/or unimolecular decomposition
reactions; (2) introduction of quantized electromagnetic (EM) fields [22]; the latter
are fundamental information carriers [20,21]. The system is simple enough to allow
illustrating the main aspects of quantum states underlying the phenomena. Here, the
wheeling concept requires quantum physics of systems coupled to external probing
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sources; this is in contrast the traditional PESs [23] (see also [2–9]) that play now a
subsidiary (yet illustrative) role via diabatic procedures.

Section 2 situates the problem; it starts from the notion that molecular (coher-
ent) quantum states, expressed as linear superpositions over basis states. Quantum
states for chemical processes are introduced; information over such states can be gath-
ered from conveniently adapted quantum-chemical models. It is worth noting that the
concept of quantum state differs from the standard one; to avoid lost in focus in refer-
ences [20,21] we discuss the issue at length. Qualitative discussion of quantum states
variations simulating chemical processes permits illustrating the abstract theoretical
approach including the role of Feshbach type resonance [24] that here are expressed
as Feshbach quantum states.

Section 3 summarizes the practical method used to introduce molecular quantum
states and briefly shows the construction of ab initio electronic basis functions needed
to model bond altering processes.

A two-state model for dissociative reaction H+
2 → H(1s)+ H+ based on floating

Gaussian approach numerically illustrate possible results; connection with experimen-
tal results is examined. We comment on the role of an external field to modulate bond
altering and possibly leading to the formation of an effective reaction barrier.

Section 4 rounds up the theoretical scheme by introducing Hamiltonian represen-
tations that include features of the semi-classic scheme via quantum numbers. Model
Hamiltonians are defined that help discussing situations related to laboratory experi-
ments.

Conclusions are presented in Sect. 5.

2 Molecular electronuclear basis states

Diabatic schemes are well known within semi-classic frameworks [2,8] albeit here
they are not end points but instead they help beginning the construction of molecular
quantum mechanical schemes.

To get a fresh start in mathematical terms it is necessary to construct mappings relat-
ing abstract quantum states formalism [20,21] to particular theories covering quantum
states sustained by matter with a well-defined number of basic constituents, namely,
electrons and nuclei. It results in the construction of electrons-nuclei separation via a
procedure based on quantum numbers [1] that departs from the mechanical one fol-
lowed in the BO model [23]; the path followed and potentialities are illustrated with
the help of refs. [2–9] and references therein. Here, for the sake of completeness, an
overview with fresh ideas is presented. These latter are required because the target
level corresponds to laboratory floor where quantum states sustained by material sys-
tems are probed (measured) by quantum physical systems and eventually recorded
[20].

A “quantum probe”, e.g., quantized electromagnetic radiation, can be thought as a
generic device that drives a material system, yet not the particles but the quantum state.
Thus, when a chemical process is subject to “probing,” one induces responses origi-
nated in time-dependent quantum states [1,20,21]. Our goal is to characterize these
quantum states, and monitor their behavior in terms of quantum-state amplitudes.
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2.1 Abstract framework

Bridging abstract formalism in Hilbert space to one projected at a laboratory level is
the principal target; this might help sensing where the problems are when coming to
probing laboratory systems.

Consider a general material system, defined by its number of electrons (n) and
nuclei (N ), in addition to a time-independent Hamiltonian Ĥ . Let {| j〉} and {ε j } be
the corresponding complete set of basis states with respective eigenvalues. Any quan-
tum state for this system is a |�, t〉-ket written as a linear superposition with complex
number amplitudes {C j }:

|�, t〉 =
∑

j

C j (�, t)| j〉 = (|1〉 . . . | j〉 . . .) · (
C1 . . .C j . . .

)t
. (1)

Consider an elementary transition from an “initial” (root) state |k′〉 towards a target
state |k〉. If |k〉〈k′| is the excitation operator for this k′ → k transition, the [Ĥ , |k〉〈k′|]-
commutator provides information on the possible response of the |�, t〉-ket projected
over |k〉:

〈k|[Ĥ , |k〉〈k′ |]|�, t〉 = (εk − εk′)Ck′(�, t). (2)

The amplitude at the initial state |k′〉(i.e.,Ck′(�, t)) will modulate the response and
Bohr’s postulate permits matching the Hilbert space gap (εk − εk′) with EM-radia-
tion at frequency ω at a laboratory setup; information transmission and production is
hence involved. Only nonzero amplitudes will yield a response at probing time with
the appropriate frequencies.

Yet “probing” is not an operation in Hilbert space of {|k〉}-kets.
To achieve probing representation, an external source needs to be switched on

[20,21]. Once this interaction source is included and allowed to interact, the resulting
physical state will be given as linear superpositions similar to Eq. (1). The amplitudes
register the changes.

We effectively try now opening a connection to laboratory systems. The represen-
tation in abstract Hilbert space is hence mapped to laboratory space by defining a
“fence region” [20]. This “fence connection” is made within the framework of special
relativity theory [21]. An inertial frame (I-frame) allows us to introduce space-time
coordinates; time t appears as a parameter in Eq. (1), while space enters as Euclidean
coordinates x = (x1, . . ., xn+1, . . ., xn+N ); the number of degrees of freedom deter-
mines the dimension of this abstract vector space. While I-frames’ origin and relative
orientations belong to laboratory space, x-vectors belong to an abstract Cartesian prod-
uct space used to label configuration kets {|x〉} that in turn define a “rigged Hilbert
space” [22]. (For the sake of simplicity, spin degrees of freedom are not explicitly
considered at this point.) Finally, a Hamiltonian introduces the parameters defining
the material system; projecting abstract quantum states with {|x〉}-set wave functions
obtain:

“Projection′′ of |�〉 → 〈x|�〉 → �(x),
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〈x|�〉 is a complex (generalized) function over real number support; in mathematic
notation: �(x).

Note, dx|x〉〈x|�〉 stands out as a coded information of the quantum state in the
hyper-volume dx around a configuration space point x. The set {�(x)} still is an
abstract Hilbert space. Note that there are an infinite number of quantum states and
a finite number of material elements. The only requirement on the quantum state is
that it is sustained by the materiality contained in the total given volume; there is no
way to further localize the matter content, only its presence is required. This is a clear
difference compared to standard theory.

A concept of molecular structure lacks in this context because |�, t〉 and �(x) are
functions supported by an abstract space {x}. Only a semiclassic framework would
permit structural definitions concerning elements of real space where an I-frame is
planted [19].

Formally, the I-frame “localizes” a projected quantum |�, t〉-state through complex
functions 〈x|�, t〉; the abstract {| j〉}-kets are mapped onto the set of basis functions
{ f j (x) = 〈x| j〉}; the amplitudes in Eq. (1) remain the same after this operation. The
scalar product ( f1(x). . . f j (x). . .) · (C1. . .C j . . .)

t represents the quantum state in the
projected basis set.

A first level of chemical information is introduced by partitioning the x-configu-
rations formally into electron and nuclear degrees of freedom: q = (q1, . . .qn) and
ξ = (ξ1, . . ., ξ N ), respectively. The generic basis functions are not separable, yet
quantum numbers are made distinct based on experimental experience. Therefore, the
labels of basis functions can then be cast as: f j (x) → fk,g(k)(q,ξ), where the quantum
numbers distinguish between electronic (k) and subsidiary nuclear elements (g(k)). In
principle, this spectroscopic labeling does not detract from the basis set completeness.

2.2 Molecular bases: semiclassical framework

Following basic ideas from refs. [1–9,20] exact basis states fk,g(k)(q, ξ) can be the
place for further modeling. For example, we consider here mappings introducing elec-
tronuclear separation by quantum numbers [1]:

fk,g(k)(q, ξ) → ψk (q) Xg(k)(ξ). (3)

A second level of chemical information employs the nuclear ξ -configuration space.
This can be taken as, either a geometric nuclear position space when standard quan-
tum chemical algorithms are used; or once quantum numbers are selected its abstract
nature must be restored to get electro-nuclear wave functions. The choice depends
upon the problem under study; in contrast, q-space retains its abstract meaning and
only quantum numbers are meaningful.

The quantum state now takes on the form:

〈q, ξ |�, t〉 ≈
∑

k

∑

g(k)

Ck,g(k)(�, t)ψk (q) Xg(k)(ξ). (4)
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The quantum number g(k) identifies basis functions that, though related to nuclear
degrees of freedom, are strictly not separable from the electronic part; i.e. nuclei never
“move as particles” [20,21]. The order chosen for (q,ξ)-space is fixed. In the semiclas-
sic model the resulting ξ -configuration space may include information on “stationary
nuclear geometries” [2,7–9]. An important restriction remains however intact: no
attempt is made at describing “particle electronic motion” [20,21]. The concern is
about changes of quantum states (amplitudes). We are no longer describing objects
be they quantum objects; as a matter of fact, this is the trait differentiating the present
approach with many others based on a BO scheme. Here, only quantum states are
sought. This change goes hand in hand with the view of quantum states sustained by
a materiality that is kept fixed while quantum states count in sets of infinite elements.
The materiality does not wear a quantum state as a T-shirt, it sustain quantum states
without localization [20].

A set of nuclear energy levels tagged with electronic { j}-labels associated with
(electronic) attractors defined by a {ξ ( j)}-geometries complete the model: [1]

E j,g( j) = E j (ξ
( j))+ εg( j). (5)

The key point concerns these energy levels that do not depend upon instantaneous
nuclear positions, as it is the case in our semi-classic schemes. These electronucle-
ar quantum numbers contain information needed to analyze the physical-chemical
processes of interest.

In spite of the fact that, mathematically, the basis set {�k(q)Xg(k)(ξ)} is incom-
plete, the framework can be used to define particular models able to handle most of the
experimental situations described in refs. [10–17]. In practice, the separable set should
be sufficient whenever the molecular processes can be described with electronic states
associated with a single I-frame.

However, a simple scattering system such as H(1s)+ H+ involves three I-frames.
Under laboratory conditions several frames can exist, but once chosen, a proper quan-
tum treatment must subsume them into a single one representation (see below).

2.3 Box-basis-states and chemical processes description

A possible avenue to address the above issue is by labeling electronuclear basis func-
tions with quantum numbers formally derived by embedding each I-frame system in
the same, auxiliary three-dimensional (3-D) box retaining appropriate quantum num-
bers for box-states. In a pictorial way, these particle-states are gathered into direct
products that preserve the order of elementary constituents (electrons and nuclei).

Consider a sufficiently large box that encloses all relevant laboratory settings one
deems necessary to include. If the quantum states (sustained by the material system
[20,21]) are embedded into the same box, each of them will give rise (separately) to
conventional energy-box levels denoted as: En(H+

2 )
, En(H), En(H+), where n is a vec-

tor of 3-D box quantum numbers. To ensure commensurability with the electronuclear
H+

2 system base states, combine the latter two into the composite elements required by
the laboratory conditions: the associated basis states are direct products of box-states
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for the H and H+ I-frame systems, i.e., |n(H)〉 ⊗ |n(H+)〉 and |n(H+)〉 ⊗ |n(H)〉,
with energies labeled as En(H,H+) and En(H+,H). Note the symbols H and H+ do
not stand for objects but refer to quantum numbers: any permutations affect quantum
numbers and not the order in configuration space. In this context, H+ is characterized
by an implicit “hole” quantum number.

Last but not least, quantized EM fields belonging to the Fock space (photon base
states discussed in ref. [22]) that are characteristic of quantum electrodynamics com-
plete the description for laboratory arrangements; its associated basis vectors |nω〉 are
labeled by the number of energy quanta nω of frequency ω at disposal in the field [21].
See also Chap. 19 in ref. [22].

2.3.1 Free and entangled radiation/matter states

Select two generic electronic states for H+
2 , k = 0 and k = 1 and two quantized EM

field basis (with angular frequency ω), {|nω = 0〉&|nω = 1〉}) and form two direct
product base states:

|n (
H+

2

) ; k = 0〉 ⊗ |nω = 1〉 and |n (
H+

2

) ; k = 1〉 ⊗ |nω = 0〉, (6a)

En(H+
2 )

is set as the ground-state energy of the box-states. The direct product notation
is flexible enough to let us implicitly hint at relative directions, as well as the relative
I-frame kinetic energy for the material system; this is good enough for a qualitative
analysis. The basis states (6a) are non-entangled (free states) and display the same
energy. In contrast, entangled basis states involving the material system dressed by an
EM field would read as follows:

|n (
H+

2

) ; k = 0; nω = 1〉 and |n (
H+

2

) ; k = 1; nω = 0〉, (6b)

The labels embrace all the information. Energy is no longer available to the EM
field; the subsystems are non separable. The material base states are then dressed with
the EM field constituting a new type of base functions (at the fence).

Finally, the entangled quantum states for entire system appear as time-dependent
linear superpositions over all basis functions; the resulting description involves one
inertial frame. The presence of entangled states is relevant at the fence space (labora-
tory) so that care must be exercised in examining time evolution there.

2.3.2 Feshbach quantum states

We have at hand the elements to construct a model basis set. Adjust collision energy
for a pair

(
En(H) + En(H+)

)
in near-resonance to En(H+

2 )
states (entangled and non-

entangled with the radiation field), the material system sustains linear superposition
states of the kind:
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|�〉 = CI|n(H+
2 ); k = 0〉 ⊗ |nω = 1〉 + CII|n(H+

2 ); k = 1〉 ⊗ |nω = 0〉
+ CI′ |n(H+

2 ); k = 0; nω = 1〉 + CII′ |n(H+
2 ); k = 1; nω = 0〉

+ CIII|n(H)〉 ⊗ |n(H+)〉 + CIV|n(H+)〉 ⊗ |n(H)〉 + · · ·
≡ (|I〉| II〉 ∣∣I′〉∣∣ II′〉 |III〉| IV〉 . . .) · (CI CII CI′ CII′ CIII CIV . . .)

t

(7)

In Eq. (7), the box provides a single common I-frame; detectors and/or sources are
“located” at boundaries, with their actual positions chosen by the experimenter. Before
proceeding with mathematical discussions there is need to introduce a constraint.
Namely, the model is reduced to six components and no spontaneous emission takes
place. Thus, key information is captured in the amplitudes of the column vector:

(CI CII CI′ CII′ CIII CIV)
t (8)

The interactions between entangled base states (with amplitudes CI′ and CII′) and
asymptotic base states (with amplitudes CIII and CIV) sustain generic Feshbach quan-
tum states: resonance within discrete and continuum energy levels subset [23].

2.3.3 Quantum states for chemical processes

Consider an initial laboratory condition, e.g., (0 0 0 0 1 0)t ; this state is sustained
by a left-hand-side beam of hydrogen atoms that was setup to colliding with a right-
hand-side proton beam. The opposite symmetry state would read: (0 0 0 0 0 1)t .
These states reflect possible choices in experimental set up. The characteristic of a
quantum description is that it enforces the presence (in the base set) of such possibil-
ities.

One of the effects generated by the interaction is a charge (hole) exchange
which results in the spatially-entangled quantum state, e.g.: (0 0 0 0 2−1/2 exp(iπ)
2−1/2)t . In other words, an detector (observer) located along a direction expecting an
H -atom state response can also detect a hole-response (a proton, H+), and according
to the information conveyed by the entangled quantum state it will do it with relative
intensity 1/2. Thus, even if at the laboratory level the system was prepared in a given
possibility after interaction the measured state will show response from the second
possibility that is contained in the quantum state.

The event (laboratory level) elicits only one type of response at a time. In simple
words, quantum mechanics does not describe particle motions in laboratory (real)
space; it describes quantum states sustained by this materiality [20,21].

Consider more carefully the role played by the H+
2 -states in this charge exchange.

As done conventionally, one can visualize fragments that propagate in directions that
cross at one point at a given time. The relative kinetic energy is selected so that reso-
nance conditions are met with photon field dressed base states. But one can imagine a
state where one can distinguish non-zero amplitudes at CI and CII engaging the ground
and excited electronic state of H+

2 . Now, either a channel to the entangled state is open
so that it may produce the amplitude column vector:
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(0 0 CI′ CII′ 0 0 . . .)t ; (9)

or no interaction takes place, i.e., the initial state of this system remains unchanged in
a quantum state with amplitude vector (CI 
= 0 CII = 0 0 0 0 0. . .)t .

For the entangled (dressed) case, the system enters time-dependent quantum states
sustained by the material system and the EM field in a non-separable manner:

|Entangled, τ 〉 ⇒ (0 0 CI′(τ ) CII′(τ ) 0 0)t . (10)

In Eq. (10), the τ -parameter refers to a sort of proper time (in the sense of special
relativity theory) of the entangled quantum state as determined by the laboratory con-
ditions (rather than the familiar laws of time evolution in a single isolated system). It is
here that we find the so-called “fence space”, i.e., a boundary where Hilbert space and
laboratory space must be taken into account [20,21]. From the molecular/atomic point
of view we have to handle an open system. There is a constraint we imposed above
in order to be able to use Hilbert space time evolution with the rigged base vector
(|I〉 |II〉 |I′〉 |II′〉 |III〉 |IV〉. . .). Namely, no spontaneous emission is allowed in
this model and standard time evolution holds. One can now explore the possibilities
available.

The advantage we have resides in the nature of the base states that permit discuss-
ing also possible events that, of course, suppress time evolution in this rigged Hilbert
space.

Thus, the process (0 0 0 0 1 0)t → (0 0 CI′(τ ) CII′(τ ) 0 0)t corresponds
to a possible laboratory event; it is not localizable for a single system, as not every
collision results in entanglement. But, once entanglement takes place, the time dura-
tion for the opposite process to happen is not predictable in terms of a single-system
history either; a number of alternative events can take place. Yet it can be controlled
externally (e,g. laser induced emission). However, under the constraint of our model,
the time evolution is set up allowing us to examine different possibilities.

For a chemist, a main interest resides in understanding production of ground state
H+

2 response. The system is put in an energy shell above ground state, a mechanism
would be a possible (induced) photon-emission process symbolized as:

(0 0 CI′(τ ) CII′(τ ) 0 0)t → (0 0 CI′(τ ) = 1 CII′(τ ) = 0 0 0)t

→ (1 0 0 0 0 0)t (11)

The final amplitude vector matches the basis state |n(H+
2 ); k = 0〉 ⊗ |nω = 1〉, that

we will take now to standing for a photon being emitted from the material system that
sustains the quantum state. In other words, the material system is left in the electronic
ground state and a photon state “escapes”; this is a form of decoherence.

Other possible physicochemical phenomena could also be observed. Viz., while
the system shows non-zero amplitude at the entangled state, it can relax to the ground
state via vibrational steps (a mechanism that should become more prevalent in complex
systems) and this may occur whenever the amplitude CII′ is near unity.

The field-entangled state (0 0 CI′(τ ) CII′(τ ) 0 0 . . .)t may also evolve into the
spatially-entangled state, e.g. (0 0 0 0 2−1/2 2−1/2)t , corresponding in chemical
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parlance to a charge-hole exchange. The latter quantum state embodies possibilities
accessible to the real system. E.g., one could measure a charge along a beam that came
initially from the left with to the right will detect zero charge (i.e., a H atom). All this
information is read from the wave function by detectors probing the quantum state
[20]; of course at the laboratory there is no signal sent between separate detectors in
real space.

2.3.4 Quantum reaction mechanisms via Feshbach states

One can now describe the most general reaction processes as follows: Start up from the
linear superposition state (entangled state) (0 0 CI′ CII′ CIII CIV)

t ; This entangle-
ment between a bound molecular state and its asymptotic fragments in the continuum
allows us to see the reaction process via a Feshbach resonance [23].

The amplitudes entering a general “Feshbach quantum state” (0 0 CI′ CII′ CIII
CIV)

t may all be non-zero (time evolution is omitted here but is always present unless
an event happens). Thus this quantum state results from resonant interaction between
a (quasi)-discrete bound level and a number of states in the continuum spectrum. With
the notation in Eq. (7) restricted to the first six basis functions, a generic “bond-for-
mation” process that results from two separate beams would be written as:

(0 0 0 0 0 1)t → (0 0 CI′ CII′ CIII CIV)
t � (0 0 CI′ CII′0 0)t

�
(

2−1/2 2−1/2 0 0 0 0
)t
. (12a)

Double arrows indicate that the system evolves in time under quantum mechanical
law. End result being a linear superposition of dressed ground and first-excited states
sustained by the materiality of H+

2 . Decoherence yielding (1 0 0 0 0 0)t viz. a photon
possibly emitted in a random direction.

Similarly, a generic “bond-breaking” process starting from a dressed ground state
would appear as:

(1 0 0 0 0 0)t → (0 0 CI′ CII′ 0 0)t � (0 0 CI′ CII′ CIII CIV)
t

�
(

0 0 0 0 2−1/22−1/2
)t
. (12b)

A laboratory output is the entangled state involving at laboratory space two spatially
separated beams.

For these cases (Eq. 12a, b), a Feshbach quantum state plays the pivotal role for
directing chemical change and entanglement. In a semiclassic picture, the photon
energy required to “activating” H+

2 by dressing its ground electronic state at the end
would appear as part of the relative kinetic energy.

The preceding discussions illustrate typical quantum situations associated to the
present model. Now we move on from abstract quantum analyses to contact with
more traditional manners to describe chemical processes yet keeping the quantum
flavor. So far we have done this with analytical semi-classic situations [4–9].
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3 Bridging attractors and asymptotic states

For chemical processes as those for instance discussed by Butler [25] we have to link
bound states to a variety of asymptotic states representing possible reactants (prod-
ucts). The standard manner used with adiabatic procedures is no longer an option. We
proceed as follows.

The electronic energy given in Eq. (5) comes out as variational solution leading to
the equation [7–9]:

Ĥe

(
q̂; ξ ( j)

)
ψ
( j)
k (q) = Ek(ξ

( j))ψ
( j)
k = E ( j)

k ψ
( j)
k , (13)

The electronic base function ψk=0
( j)(q) determines the stationary geometry ξ ( j)

(cf. [1–9] for details). More interesting, the sets {E ( j)
k } and {E (n)k } j 
= n in principle

includes the same diabatic eigen functions ordered in a different manner [7–9]. These
electronic functions are characterized by their nodal distributions. Using an appropri-
ate ordering procedure organize the information with sets of E j,g( j) that counts all
meaningful states.

Thus the set {E j,g( j)} and
{
φ j,g( j)

}
provides labels attached to chemical species via

the auxiliary diabatic determination. They form a subset of a complete set of bound
eigen states for the total Hamiltonian:Ĥ = K̂ (ξ)+ Ĥe

(
q̂, ξ

)
Hamiltonian Ĥ is diag-

onal in the
{
φ j,g( j)

}
-basis set. This is one of the key feature this model has [1–9].

Thus, the energy eigenvalues are independent from the instantaneous nuclear posi-
tions. This fact will be used to construct more advanced models in Sect. 5.

3.1 Electronic states model prompted by external fields

With the diabatic-basis model compute the quantum superposition states denoted as
|
〉 in presence of external fields;
 are eigen functions of the electronic Hamiltonian
in the field Ĥfull:

Ĥfull = Ĥe
(
q̂, ξ

) + V̂e−field (14)

Symbol p̂ is the electronic momentum operator; A is the electromagnetic vector poten-
tial. The electronuclear functions {
(q; ξ)}-functions depend of the applied external
electric field through A:


(q; ξ) =
∑

k

Ck(A, ξ)ψk (q). (15a)

The two open-shell bases {ψi }-functions differ in parity;ψ1 resembles a σg molecular
orbital and ψ2 correlates with a σu orbital at x → ∞. The different symmetry makes
it possible to couple these functions with an external electric field [1,2].
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3.2 Floating Gaussian orbitals grid method

Mapping quantum and semiclassic schemes requires strict conservation of the elec-
tronic quantum number in order to interpret the |�〉-states in external fields; this
ensures that the nuclear configurations affect only the {C j }-amplitudes (cf. Eqs. (1) and
(4)). To this end, use a set of grid-fixed floating orbitals to build abini tio{ψ j (q)}-func-
tions; this procedure ensures that the pattern of nodal planes in each ψ j (q)-function
is maintained over ξ -space (i.e., they become “diabatic” functions [26]).

3.2.1 Optimized grid for the two-state description of the H+
2 → H(1s)+ H+

process

In the case of bond breaking, the “product-state” attractor is asymptotic; its calcula-
tion requires a grid with a different symmetry from that used for the “reactants” (here,
H+

2 ). Otherwise, the same type and number of orbitals are used for all reactants and
products.

Consider a three-point grid to study the H+
2 → H(1s)+ H+ process. Calculations

are performed with Gaussian 98 (G98) program [27] adapted to the present protocol.
Grid points are “ghost atoms” (denoted as Bq, for “Banquo atoms”). Each “Bq-atom” is
assigned an explicitly defined cc-pV-5Z [5s4p3d2f1g] basis set. A nonstandard option
in G98 allows us to include the H+ nuclei as a background of two positive charges
acting on three Bq-atoms.

The j-invariant U1-potential for the “reactant” |H+
2 〉-species is computed as fol-

lows:

(a) First, set the three FGOs collinearly along the x-axis. One of the Bq-atoms
becomes the origin; the other two are placed at (±xo,0,0). Initially, two positive
(H+) charges are set over these Bq-atoms; floating orbitals and charges are then
moved jointly so as to minimize the energy with respect to xo. The cc-pV5Z basis
set gives x∗

o = 0.52847 Å as optimal separation. This value defines U1(ξ
(1)), the

minimum for the |H+
2 〉-attractor. The resulting density matrix gives theψ1-func-

tion for all ξ -geometries. The equilibrium bond length r∗
B B = 2x∗

o = 1.05694 Å
and minimum energy minU 1(ξ) = −0.602626 a.u. match the “exact” results
(1.05677 Å and −0.602634 a.u., respectively [28]).

(b) Next, the FGOs are frozen at their optimized positions. Table 1 gives the corre-
sponding spin density matrix for the three “ghost-atoms.” With this information,
the potential energy function U1 is built by moving the two H+ charges, while
keeping the three-point Bq-grid fixed. For simplicity, we study U1(x), where
x is the distance between two H+ charges symmetrically placed with respect
to the Bq-atom at the origin. Figure 1 (diagram 1a) shows the arrangement for
U1(x = 2): the Bq-orbitals are denoted by open circles (at a fixed distance
rB B∗ ≈ 1.057 Å); the H+ charges appear as shaded circles. Figure 2 shows the
resulting potential energy function U1(x) for the |H+

2 〉-species; the square “1a”
corresponds to the U1value for the arrangement displayed in Fig. 1.

(c) The “product-state” involves an asymptotic fragment with no electrons, i.e., an
infinitely separated H+ charge. The corresponding attractor is built with a distinct
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Table 1 Spin-density matrix associated with the electronic molecular |H+
2 〉-state (i.e., the “diabatic reac-

tant”) as represented with a three-point grid of floating orbitals in the cc-pV5Z basis set, comprising 165
basis functions

Bq1 (left) Bq2 (centre) Bq3 (right)

Bq1 (left) 0.218042 0.081472 0.094502
Bq2 (centre) 0.081472 0.049025 0.081472
Bq3 (right) 0.094502 0.081472 0.218042

The symbols Bqi represent the orbitals (i.e., “ghost atoms”) at the positions depicted in Fig. 1. These
locations are optimized to produce the lowest-energy minimum for the H+

2 ground-state potential energy
attractor (see text for the geometry). These locations are never modified during the computation of the
“reactant” effective potential energy function U1(x) (i.e., the spin densities are constant for all x values)

Fig. 1 Construction of electronic basis functions using a three-point grid of floating orbitals. This descrip-
tion comprises two charges (the H+ nuclei, denoted by shaded circles) and three floating Gaussian functions
(denoted by open circles). The location of these orbitals (or “ghost atoms”) is optimized so as to produce
a minimum potential energy for the molecular |H+

2 〉-attractor (case 1a) and the asymptotic |H + H+〉-
attractor (case 1b). We derive the semiclassical potential energy {Ui (x)}-functions by keeping the orbital
grid fixed and placing the nuclear charges at various x-separations

three-point grid, depicted in Fig. 1 (diagram 1b). Here, one of the H+ charges is
placed at the central Bq-atom, and the other two floating orbitals to its left and
right (cf. Fig. 1a). Next, we optimize their separation so as to provide the low-
est energy for a single H (1s) atom. The optimal separation is 0.16 ± 0.01 Å
(cf. Fig. 1b), which produces an energy minU2 = −0.499995 a.u. with the
cc-pV5Z basis set, thereby matching (a) in accuracy.

(d) The k-invariant U2(x) potential energy function for the “products” is computed
as in (b), i.e., from a ψ2-function built with the fixed grid optimized in (c). The
resulting U2(x) potential appears in Fig. 2, where the right-hand side charge
is placed atop the central Bq-atom. The asymptotic dissociation channel has a
minimum only in the limit x → ∞ [8].
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Fig. 2 Semiclassical potential energy functions built with fixed orbital grids. The configurations “1a” and
“1b” correspond to those in Fig. 1 for the reactant and product states, respectively. The dashed circles stand
for the “diabatic crossings” between the curves U1(x) and U2(x). The crossing at xDC ≈ 1.4 Å represents
the region with rapid change in quantum-state amplitudes; it is associated with the occurrence of a barrier
for bond breaking. The total energy is given by Ĥfull
(q; ξ) = Efull (ξ)
 (q; ξ)

In Sect. 4, we use these {Ui (x)}-potentials to build the superposition quantum states
in an external electric field.

3.2.2 Semi-classic quantum states

The diabatic electronic basis permits construction of linear superpositions. The total
energy for this model is given by

Ĥfull
(q; ξ) = Efull (ξ)
 (q; ξ).

Employ the matrix element V12 = 〈ψ1(q)|V̂e−fieldψ2(q)〉q as a parameter propor-
tional to the applied field [28]. This implicitly plays the role of the quantized EM field
coupling. The Eq. (15a) becomes:


(q; x) = C1 (x) ψ1 (q)+ C2 (x) ψ2 (q). (15b)

The different parity implies 〈ψ1|Ĥe(q̂, ξ)ψ2〉q = 0 and 〈ψi |V̂e−fieldψi 〉q = 0, with
i = 1, 2.Therefore, the only nonzero Hamiltonian matrix elements are [cf. Eqs. (6,7)]:

〈ψ1|Ĥfullψ2〉q = V12; 〈ψi |Ĥfullψi 〉q = Ui (x). (16)
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The lowest eigenvalue of the Ĥfull-matrix gives the effective potential energy function
[7]:

Efull(x) = 〈
(q; x)|Ĥfull
(q; x)〉q

= U1 (x)+ 1/2{�U12 (x)− |�U12 (x) |√[1 + 4(V12/�U12 (x))
2]}

(17)

The energy gap: �U12(x) = U2(x)−U1(x). Finally, the amplitudes in the superposi-
tion states are [7–9]:

|C2(x)| = 1/
√{1 + (V12/[Efull(x)− U1(x)])2}, |C1|2 + |C2|2 = 1. (18)

By varying the charge separation x introduced within state-fixed floating Gaussian
model, we can study how the external coupling V12 affects the function in Eq. (15b).

In Fig. 2, the dashed circles stand for the “diabatic crossings” between the curves
U1(x) and U2(x). The crossing at xDC ≈1.4 Å represents a region with rapid change
in quantum-state amplitudes as elicited in Fig. 3. This crossing is associated with the
occurrence of a barrier for bond breaking; Fig. 4 show this in more detail.

A V12 
= 0− value produces a Efull(x)-curve that interpolates between the two
attractors and produces a rapid switch in |Ci |2-intensities near the xDC ≈ 1.4 Å
“diabatic crossing” in Fig. 2.

A nonzero amplitude in the product |H(1s)H+〉-state appears thus even in the
neighborhood of reactant-like geometries; this would correspond to a projected Fesh-
bach state as it was introduced in Sect. 2.3.3 once the model is extended, for example
see Sect. 5.

Figure 3 illustrates the typical behavior predicted by our two-state model at high-
field intensities. The results correspond to V12 = 0.05 a.u., and they depict the Efull(x)-
curve (top) and the superposition amplitudes |Ci | (bottom) as functions of the charge
separation x . For clarity, we show also the model Ui (x) potentials. Two important
observations can be made:

i At high fields, the effective energy increases monotonically from a reactant-like
quantum state at x ≈ 1.1 Å to the asymptotically separated fragments.

ii The electronic basis ψ1-function dominates the superposition quantum state in
the vicinity of the U1 minimum, yet the ψ2-contribution is still substantial. Note
also that the actual location of the global minimum for Efull(x) is shifted to
larger values (i.e., the bond lengthens as a result of the applied field). A simi-
lar bond stretching by laser fields has been reported in simple molecules [29].
For x〉xDC ≈ 1.4, we observe a marked switch in amplitudes. Note, ψ1-func-
tion contributes much less to the asymptotic “product” quantum state than the
ψ2-function contributes to the “reactant” quantum state.

A quantum physical description as given in Eq. (12a) can be “visualized” with this
figure. The extension covered by the asymptotic component (shaded region) will make
increase the “bond length” beyond the one yielded by a semiclassic picture.
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Fig. 3 This figure contains two levels of information. First, effective potential energy in the field, Efull(x),
and superposition amplitudes {|Ci |}, obtained when using an external coupling with a matrix element
V12 = 0.05 a.u. This is a typical “high-field” behaviour with no barrier. It presents a strong contribution of
the product |H + H+〉-state amplitude in the region of the molecular |H+

2 〉-reactant state. Note also the

effective “softening” of the H+
2 -bond in the field, as represented by a shift in the bond length around the

global minimum for the non-isolated electronic system. Second, the quantum scheme does not require of
potential energy functions. Instead, a set of discrete levels, e.g. E j=0,g(0) = E j=0(ξ

(0))+ εg(0) (ro-vibra-
tion model) not explicitly shown. A rectangular domain where the discrete states are immersed suggests a
continuum for the dissociated state. For the excited electronic level, just above dissociation energy limit,
i.e. E j=1,g(1), the coupling with this continuum contributes to the Feshbach quantum states discussed in
the text

While the above pattern characterizes a nonzero V12-coupling, the qualitative behav-
ior varies with the field intensity. Figure 4 highlights the results for Efull(x) in the region
near the xDC crossing.

After the barrier there is a shallow minimum at large H+-charge separations. Its
location varies from xmin ≈ 2.9 Å for V12 = 0.010 a.u. to xmin ≈ 2.1 Å for V12 =
0.019 a.u., before it disappears at the critical V12

(c)-value. This minimum resembles
the trapping of H(1s) + H+ fragments believed to take place during the dynamics
of H+

2 in intense laser fields [30]. Indeed, simulations of H+
2 dynamics dressed in a

123



J Math Chem (2012) 50:949–970 965

Fig. 4 The curve (a) corresponds to V12 = 0.01 a.u., while the curve (b) corresponds to the case V12 =
0.05 a.u. The results show that there is an effective barrier for the process at sufficiently low external fields.
In the case of curve (a), the barrier for bond formation (i.e., H(1s)+ H+ → H+

2 ) is ca. 1.3 kcal/mol. The
barrier decreases with the field intensity; our model predicts a critical coupling for a barrierless process

V (c)12 ≈ 0.02 a.u. At V12 = 0.019 a.u., the last detectable barrier is located at x = 1.95 Å and it is vanish-

ingly small for the H(1s)+ H+ → H+
2 reaction (ca. 10−6 a.u.). Change in the geometry of the effective

Efull(x)-energy as a function of the external coupling. (Only the region around the U1 = U2 crossing
xDC ≈ 1.4 Å is highlighted). A barrier appears at low fields (V12 = 0.01 a.u., case (1a)), but it is absent
at higher external couplings (V12 = 0.05 a.u., case (1a)). We estimate the critical coupling for a barrierless

bond breaking in H+
2 as V (c)12 = 0.02 a.u.

laser field suggest that the ground state can be trapped in a region satisfying x ≥ 3 Å
at laser intensities ca. 4 × 1013W/cm2 [31].

3.3 Quantum chemical mechanistic aspect

The semi-classic computations reported above basically illustrate diabatic behavior.
And now we can qualitatively examine some aspects of the quantum mechanistic
elements from preceding sections.

There is a ladder if vibration mode centered at the attractor structure characteristic
of the quantum states associated to H+

2 . In view of the apparent anharmonicity the
domain where the vibration function is well defined becomes larger and larger. Besides
these states one should count rotational levels associated to the vibronic levels. These
levels are immersed in the dissociation continuum as suggested in the picture.

About and above the dissociation limit the vibronic levels start sensing the contin-
uum related to the asymptotic states. Figure 3 can be seen as pointing to the region
where Feshbach quantum states become accessible. In so far time evolution keep the
system wandering in that amplitude space there is a delocalization of the nuclear states
well beyond classical limits; at x ≈ 1.4 there are non-zero amplitudes in both chan-
nels. As laser energy increases the energy shell locates well above dissociation limit;
things appear as if the bonding of H+ − H+ becomes floppy. Observe that, provided
no spontaneous emission takes place the quantum state keeps a “bonding” pattern.
We cannot say where the protons are located except that they appear to be trapped by
quantum effects.
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4 Abstract quantum models: closing a loop

The semi-classic diabatic scheme discussed above provides a subset of basis functions
and energy levels where the key information resides in the set of quantum numbers.
Formally, a nuclear kinetic energy operator K̂ (ξ) is added to Eq. (14). The key step is
to go back and retain the abstract view for the nuclear configuration space. The total
Hamiltonian reads as:

Ĥ = K̂ (ξ)+ Ĥe
(
q̂, ξ

)· (19a)

The spectra within this extended model is given by Eq. (5): E j,g( j) = E j (ξ
( j))+εg( j).

Introduce now the quantum numbers to construct a molecular (abstract) basis set:
{|E j,g( j)〉}. In so doing, the semiclassic picture is replaced by a quantum scheme.
Consequently the Hamiltonian may be represented as:

Ĥ →  j,g( j)E j,g( j)|E j,g( j)〉〈E j,g( j)| (19b)

In a way, one gets rid of classical mechanical variables yet chemical structural infor-
mation is gleaned with the diabatic scheme as developed in the works from our group.
The electronic quantum number is the carrier of structural information for the present
approach.

For chemical systems susceptible to dissociate/associate there are base states
belonging to the continuum of a particular dissociation limit, Ed . The model Hamil-
tonian containing this novel information can be written as:

Ĥ →  j,g( j)E j,g( j)|E j,g( j)〉〈E j,g( j)| +
E∫

Ec

d E ′|E ′〉〈E ′| (20)

The upper limit is controlled by the requirements of the experimental situation. Figure 3
should be seen as a stack of energy levels below and above dissociation limit for H+

2
ground state. The levels immersed in the continuum (shaded region) via interaction
acquire an energy width that corresponds to a quantum state extending beyond the
semiclassic bounds. The quantum Feshbach state belongs to this manifold.

These are the elements required to constructing a computation scheme relating
laboratory issues to the abstract quantum mechanical models (see below).

5 Quantum dynamical simulations at laboratory level

5.1 Quantum states sustained by a material system

For the hydrogen atom total spin K = J + I = 0, 1 while the proton states I = 1/2.
Bound states are identified by K = 1/2, 3/2 corresponding to spin doublet and qua-
druplet states.
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Asymptotic base states show a generic form: a plane waves multiplied by an internal
quantum base state, say, exp(ik.x)|K M K 〉. Generic proton states exp(ik′.x′)|I M I〉.
Implied here is the origin for the respective I-frames that identify the source locations.
The system is reduced to one-I-frame situation by selecting common boxes and a
procedure similar to the one presented in Sect. 2.3 is assumed.

The electronic internal state is signaled by a corresponding quantum number: e.g.
exp(ik.x)|K M K , E ′〉 for beam states and |K M K , E j (k),g( j)〉 for bound states. The
information is transported by the base states. For the proton, the base states are sig-
naled by the intrinsic angular momentum quantum number (internal state) and the box
quantum numbers in a manner similar to that presented in Sect. 2.3.

The direct product base states |I,M I,n(H+)〉⊗|K M K ,n(H)〉 include information
via the symbols identifying box quantum numbers. The bound state base functions
include data on the internal quantum state: |K M K ,n(H+

2 ); E j,g( j)〉. Thus n(H+
2 )

refers to the kinetic energy one can put on the I-frame; for n(H+
2 ) = 0 the energy

involved is indicated by the internal eigenvalue.
Going back to Fig. 3 it is apparent that the diabatic H+

2 state sustains a vibration-
rotation set of energy levels that now are embedded in the continuum of asymptotic
states; also suggested is the dissociation continuum. Those discrete levels found about
and above the crossing level will couple to the continuum takes to form linear super-
positions; from our structural chemical view point the probing will show a very large
zone occupied by the heavy elements (protons). This quantum physical effect is one
that is missing in standard semi-classic pictures.

This concludes the preparation of a chemical base set for an open system. To each
attractor there is an energy ladder of levels related to nuclear degrees of freedom.

It is worth to insist that a second quantization like formalism can be done in the
present context because only quantum numbers matter. The material elements must
be present in order to sustain quantum states changes yet they are not localized in a
quantum chemical sense.

A subtle element concerns the nature of the abstract quantum numbers. Although we
know of their parenthood due to the construction method these numbers are not “vib-
ronic” quantum numbers. The reason is simple: quantum mechanics does not describe
the motions of particle in real space; yet in a full-fledged semi-classic scheme [32] the
name appears logic.

5.2 Quantum simulation framework

At the laboratory the total Hamiltonian includes external fields. For the model calcu-
lations reported above this operator was named as Ĥfull, now it is renamed as:

Ĥlaboratory = Ĥ + V̂e−field + · · · (21)

The reason is simple, because Ĥ is introduced via Eq. (19b) or more properly, Eq. (20)
that is able to purport spectral laboratory information as well.
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The operators V̂e−field + · · · stand for all possible types of experimental situations
one might be analyzing. This operator must be cast in terms of creation/annihilation
operators when the quantized EM is included.

In practical computations we first construct a secular equation with operators (20)
and (21). The dimension of the matrix is, in principle, infinite by infinite. External
conditions are used to select “slices” of finite dimensions and the scheme becomes
adaptable to simulations.

Note that it is operator (21) with Hamiltonian (20) that relates to the representation
given in Eq. (7) Sect. 2.3.2 Following this procedure, the explicit particle representa-
tion is hidden so that it serves the computational purpose basically.

At this point it is natural to let in non-classical degrees of freedom such as half-
integer spin angular momenta in the basis set as it was done in the preceding section.

Now, the transition matrix elements parametrically depend upon experimental con-
ditions. This is one of the key features introduced with the help of this abstract for-
malism. The quantum states obtained stands for the response towards further probes.
This is one of the characteristics of quantum systems under modulations with external
probing devices.

Thus, the scheme proposed here appears to be apt to implement simulation proce-
dures to be discussed elsewhere.

6 Final comments and conclusions

The present quantum methodology views chemical processes as akin to electronic
“transitions,” i.e., they involve changes in coherent quantum states modulated by
applied fields, in particular electromagnetic ones. Reaction channels are opened by
the system’s ability, under external steering, to develop large amplitude at a particular
electronic base state designated as “product.” The present approach seeks to be con-
sistent with modern quantum technologies to control molecular systems [10–17] with
all their promise to manipulate structure and reaction mechanisms [15,33] via spatial
confinement and electromagnetic fields.

The emerging physical picture discussed in this paper is centered on the role of Fesh-
bach quantum states for material systems entangled with the radiation field. These
resonance states act as gates to change amplitudes at entangled bound base states,
as well as exit towards entangled asymptotically separated molecular states, thereby
emphasizing the quantum physical nature of chemical bond reshuffling processes.
The semiclassic (diabatic) model reinforces the qualitative views. Feshbach quantum
state may appear to be a quantum path to describe bond reshuffling in general bond
alteration processes. This hypothesis is to be tested in further studies.

The model attains a quantum mechanical structure that make it adaptable to the
study of quantum impurity models as described in ref. [34]. Thus, we might be able to
wed information coming from advanced quantum chemical sources to, for example,
continuous-time Monte Carlo methods to study quantum impurity models.

Note that among the steps required to re-construct a quantum picture starting from
the semi-classic model quantization of translational energy plays a key role. This issue
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is entering again as shown by Toutounji’s work [35] in the realms of quantum as well
as mathematical chemistry.

Summing up, theoretical developments and non-routine computations results can
hence relate directly to experiment, which gives an encouraging perspective. However,
the quantum nature of matter defies the classical intuition; and one of the reasons for
this state of affair originate by interactions with external probing expresses via matter-
sustained quantum states and not as a material object. Quantum physics by addressing,
in principle, all possible quantum states resulting from interactions brings novelties
that are difficult to digest and assimilate within current forms of interpreting quantum
mechanics. Thus, mathematical chemistry becomes an essential framework to mediate
different levels of presence for material systems [20,21].
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